队列是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表。进行插入操作的端称为队尾,进行删除操作的端称为队头。
如上图所示,队列是典型的 FIFO 数据结构。插入(insert)操作也称作入队(enqueue或push),新元素始终被添加在队列的末尾。 删除(delete)操作也被称为出队(dequeue或pop)。 你只能移除第一个元素。
与栈相同可以视为线性表的一种阉割版,所以只要是线性表(可以基于下标位置获取对应数据的,一般是数组或链表)都可以作为队列的实现。
队列也是日常生活中最常见的数据结构,如正常的上车排队
首先最基本的基于数组实现
// 用数组实现的队列
public class ArrayQueue {
// 数组:items,数组大小:n
private String[] items;
private int n = 0;
// head表示队头下标,tail表示队尾下标
private int head = 0;
private int tail = 0;
// 申请一个大小为capacity的数组
public ArrayQueue(int capacity) {
items = new String[capacity];
n = capacity;
}
// 入队
public boolean enqueue(String item) {
// 如果tail == n 表示队列已经满了
if (tail == n) return false;
items[tail] = item;
++tail;
return true;
}
// 出队
public String dequeue() {
// 如果head == tail 表示队列为空
if (head == tail) return null;
// 为了让其他语言的同学看的更加明确,把--操作放到单独一行来写了
String ret = items[head];
++head;
return ret;
}
}
数组实现的缺点:
如上:
随着不停地进行入队、出队操作,head 和 tail 都会持续往后移动。当 tail 移动到最右边,即使数组中还有空闲空间,也无法继续往队列中添加数据了。也就是数组删除导致数组不完全的问题,每次进行出队操作都相当于删除数组下标为 0 的数据,要搬移整个队列中的数据,这样出队操作的时间复杂度就会从原来的 O(1) 变为 O(n)。
实际上,我们在出队时可以不用搬移数据。如果没有空闲空间了,我们只需要在入队时,再集中触发一次数据的搬移操作。借助这个思想,出队函数 dequeue() 保持不变,我们稍加改造一下入队函数 enqueue() 的实现,就可以轻松解决刚才的问题了。下面是具体的代码:
// 入队操作,将item放入队尾
public boolean enqueue(String item) {
// tail == n表示队列末尾没有空间了
if (tail == n) {
// tail ==n && head==0,表示整个队列都占满了
if (head == 0) return false;
// 数据搬移
for (int i = head; i < tail; ++i) {
items[i-head] = items[i];
}
// 搬移完之后重新更新head和tail
tail -= head;
head = 0;
}
items[tail] = item;
++tail;
return true;
}
从代码中我们看到,当队列的 tail 指针移动到数组的最右边后,如果有新的数据入队,我们可以将 head 到 tail 之间的数据,整体搬移到数组中 0 到 tail-head 的位置。
同理,基于链表的实现,我们同样需要两个指针:head 指针和 tail 指针。它们分别指向链表的第一个结点和最后一个结点。如图所示,入队时,tail->next= new_node, tail = tail->next;出队时,head = head->next。
循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。
循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。
前面,我们提供了一种简单但低效的队列实现。
更有效的方法是使用循环队列。具体来说,我们可以使用固定大小的数组和两个指针来指示起始位置和结束位置。 目的是重用我们之前提到的被浪费的存储。
public class CircularQueue {
// 数组:items,数组大小:n
private String[] items;
private int n = 0;
// head表示队头下标,tail表示队尾下标
private int head = 0;
private int tail = 0;
// 申请一个大小为capacity的数组
public CircularQueue(int capacity) {
items = new String[capacity];
n = capacity;
}
// 入队
public boolean enqueue(String item) {
// 队列满了
if ((tail + 1) % n == head) return false;
items[tail] = item;
tail = (tail + 1) % n;
return true;
}
// 出队
public String dequeue() {
// 如果head == tail 表示队列为空
if (head == tail) return null;
String ret = items[head];
head = (head + 1) % n;
return ret;
}
}
你应该已经发现了,上述的定义就是一个“生产者 - 消费者模型”!是的,我们可以使用阻塞队列,轻松实现一个“生产者 - 消费者模型”!
这种基于阻塞队列实现的“生产者 - 消费者模型”,可以有效地协调生产和消费的速度。当“生产者”生产数据的速度过快,“消费者”来不及消费时,存储数据的队列很快就会满了。这个时候,生产者就阻塞等待,直到“消费者”消费了数据,“生产者”才会被唤醒继续“生产”。而且不仅如此,基于阻塞队列,我们还可以通过协调“生产者”和“消费者”的个数,来提高数据的处理效率。比如前面的例子,我们可以多配置几个“消费者”,来应对一个“生产者”。
前面我们讲了阻塞队列,在多线程情况下,会有多个线程同时操作队列,这个时候就会存在线程安全问题,那如何实现一个线程安全的队列呢?线程安全的队列我们叫作并发队列。最简单直接的实现方式是直接在 enqueue()、dequeue() 方法上加锁,但是锁粒度大并发度会比较低,同一时刻仅允许一个存或者取操作。实际上,基于数组的循环队列,利用 CAS 原子操作,可以实现非常高效的并发队列。这也是循环队列比链式队列应用更加广泛的原因。
线程池没有空闲线程时,新的任务请求线程资源时,线程池该如何处理?各种处理策略又是如何实现的呢?
我们一般有两种处理策略。第一种是非阻塞的处理方式,直接拒绝任务请求;另一种是阻塞的处理方式,将请求排队,等到有空闲线程时,取出排队的请求继续处理。
那如何存储排队的请求呢?
我们希望公平地处理每个排队的请求,先进者先服务,所以队列这种数据结构很适合来存储排队请求。
队列有基于链表和基于数组这两种实现方式。这两种实现方式对于排队请求又有什么区别呢?
基于链表的实现方式,可以实现一个支持无限排队的无界队列(unbounded queue),但是可能会导致过多的请求排队等待,请求处理的响应时间过长。所以,针对响应时间比较敏感的系统,基于链表实现的无限排队的线程池是不合适的。而基于数组实现的有界队列(bounded queue),队列的大小有限,所以线程池中排队的请求超过队列大小时,接下来的请求就会被拒绝,这种方式对响应时间敏感的系统来说,就相对更加合理。
不过,设置一个合理的队列大小,也是非常有讲究的。队列太大导致等待的请求太多,队列太小会导致无法充分利用系统资源、发挥最大性能。除了前面讲到队列应用在线程池请求排队的场景之外,队列可以应用在任何有限资源池中,用于排队请求,比如数据库连接池等。
实际上,对于大部分资源有限的场景,当没有空闲资源时,基本上都可以通过“队列”这种数据结构来实现请求排队。
队列基础题:
1.写一个 RecentCounter 类来计算最近的请求。
它只有一个方法:ping(int t),其中 t 代表以毫秒为单位的某个时间.
返回从 3000 毫秒前到现在的 ping 数。
任何处于 [t - 3000, t] 时间范围之内的 ping 都将会被计算在内,包括当前(指 t 时刻)的 ping。
保证每次对 ping 的调用都使用比之前更大的 t 值。
示例:
输入:inputs = ["RecentCounter","ping","ping","ping","ping"], inputs = [[],[1],[100],[3001],[3002]]
输出:[null,1,2,3,3]
提示:
每个测试用例最多调用 10000 次 ping。
每个测试用例会使用严格递增的 t 值来调用 ping。
每次调用 ping 都有 1 <= t <= 10^9。
来源:力扣(LeetCode)933题
class RecentCounter {
Queue<Integer> q;
public RecentCounter() {
q = new LinkedList();
}
public int ping(int t) {
q.add(t);
while (q.peek() < t - 3000)
q.poll();
return q.size();
}
}
2.给定一个用字符数组表示的 CPU 需要执行的任务列表。其中包含使用大写的 A - Z 字母表示的26 种不同种类的任务。任务可以以任意顺序执行,并且每个任务都可以在 1 个单位时间内执行完。CPU 在任何一个单位时间内都可以执行一个任务,或者在待命状态。
然而,两个相同种类的任务之间必须有长度为 n 的冷却时间,因此至少有连续 n 个单位时间内 CPU 在执行不同的任务,或者在待命状态。
你需要计算完成所有任务所需要的最短时间。
示例 1:
输入: tasks = ["A","A","A","B","B","B"], n = 2
输出: 8
执行顺序: A -> B -> (待命) -> A -> B -> (待命) -> A -> B.
注:
任务的总个数为 [1, 10000]。
n 的取值范围为 [0, 100]。
来源:力扣(LeetCode)621题
public class Solution {
public int leastInterval(char[] tasks, int n) {
int[] map = new int[26];
for (char c: tasks)
map[c - 'A']++;
PriorityQueue < Integer > queue = new PriorityQueue < > (26, Collections.reverseOrder());
for (int f: map) {
if (f > 0)
queue.add(f);
}
int time = 0;
while (!queue.isEmpty()) {
int i = 0;
List < Integer > temp = new ArrayList < > ();
while (i <= n) {
if (!queue.isEmpty()) {
if (queue.peek() > 1)
temp.add(queue.poll() - 1);
else
queue.poll();
}
time++;
if (queue.isEmpty() && temp.size() == 0)
break;
i++;
}
for (int l: temp)
queue.add(l);
}
return time;
}
}
3.返回 A 的最短的非空连续子数组的长度,该子数组的和至少为 K 。
如果没有和至少为 K 的非空子数组,返回 -1 。
示例 1:
输入:A = [1], K = 1
输出:1
示例 2:
输入:A = [1,2], K = 4
输出:-1
示例 3:
输入:A = [2,-1,2], K = 3
输出:3
提示:
1 <= A.length <= 50000
-10 ^ 5 <= A[i] <= 10 ^ 5
1 <= K <= 10 ^ 9
来源:力扣(LeetCode)862题
class Solution {
public int shortestSubarray(int[] A, int K) {
int N = A.length;
long[] P = new long[N+1];
for (int i = 0; i < N; ++i)
P[i+1] = P[i] + (long) A[i];
// Want smallest y-x with P[y] - P[x] >= K
int ans = N+1; // N+1 is impossible
Deque<Integer> monoq = new LinkedList(); //opt(y) candidates, as indices of P
for (int y = 0; y < P.length; ++y) {
// Want opt(y) = largest x with P[x] <= P[y] - K;
while (!monoq.isEmpty() && P[y] <= P[monoq.getLast()])
monoq.removeLast();
while (!monoq.isEmpty() && P[y] >= P[monoq.getFirst()] + K)
ans = Math.min(ans, y - monoq.removeFirst());
monoq.addLast(y);
}
return ans < N+1 ? ans : -1;
}
}
本文由 寻非 创作,如果您觉得本文不错,请随意赞赏
采用 知识共享署名4.0 国际许可协议进行许可
本站文章除注明转载/出处外,均为本站原创或翻译,转载前请务必署名
原文链接:https://www.zhouning.group/archives/数据结构基础05线性数据结构之队列
最后更新:2020-02-05 18:30:41
Update your browser to view this website correctly. Update my browser now