数据结构基础05——线性数据结构之队列

队列是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表。进行插入操作的端称为队尾,进行删除操作的端称为队头。
image.png
如上图所示,队列是典型的 FIFO 数据结构。插入(insert)操作也称作入队(enqueue或push),新元素始终被添加在队列的末尾。 删除(delete)操作也被称为出队(dequeue或pop)。 你只能移除第一个元素。

与栈相同可以视为线性表的一种阉割版,所以只要是线性表(可以基于下标位置获取对应数据的,一般是数组或链表)都可以作为队列的实现。

队列也是日常生活中最常见的数据结构,如正常的上车排队

基本队列

首先最基本的基于数组实现


// 用数组实现的队列
public class ArrayQueue {
  // 数组:items,数组大小:n
  private String[] items;
  private int n = 0;
  // head表示队头下标,tail表示队尾下标
  private int head = 0;
  private int tail = 0;

  // 申请一个大小为capacity的数组
  public ArrayQueue(int capacity) {
    items = new String[capacity];
    n = capacity;
  }

  // 入队
  public boolean enqueue(String item) {
    // 如果tail == n 表示队列已经满了
    if (tail == n) return false;
    items[tail] = item;
    ++tail;
    return true;
  }

  // 出队
  public String dequeue() {
    // 如果head == tail 表示队列为空
    if (head == tail) return null;
    // 为了让其他语言的同学看的更加明确,把--操作放到单独一行来写了
    String ret = items[head];
    ++head;
    return ret;
  }
}

数组实现的缺点:
image.png
如上:
随着不停地进行入队、出队操作,head 和 tail 都会持续往后移动。当 tail 移动到最右边,即使数组中还有空闲空间,也无法继续往队列中添加数据了。也就是数组删除导致数组不完全的问题,每次进行出队操作都相当于删除数组下标为 0 的数据,要搬移整个队列中的数据,这样出队操作的时间复杂度就会从原来的 O(1) 变为 O(n)。

实际上,我们在出队时可以不用搬移数据。如果没有空闲空间了,我们只需要在入队时,再集中触发一次数据的搬移操作。借助这个思想,出队函数 dequeue() 保持不变,我们稍加改造一下入队函数 enqueue() 的实现,就可以轻松解决刚才的问题了。下面是具体的代码:


   // 入队操作,将item放入队尾
  public boolean enqueue(String item) {
    // tail == n表示队列末尾没有空间了
    if (tail == n) {
      // tail ==n && head==0,表示整个队列都占满了
      if (head == 0) return false;
      // 数据搬移
      for (int i = head; i < tail; ++i) {
        items[i-head] = items[i];
      }
      // 搬移完之后重新更新head和tail
      tail -= head;
      head = 0;
    }
    
    items[tail] = item;
    ++tail;
    return true;
  }

从代码中我们看到,当队列的 tail 指针移动到数组的最右边后,如果有新的数据入队,我们可以将 head 到 tail 之间的数据,整体搬移到数组中 0 到 tail-head 的位置。
同理,基于链表的实现,我们同样需要两个指针:head 指针和 tail 指针。它们分别指向链表的第一个结点和最后一个结点。如图所示,入队时,tail->next= new_node, tail = tail->next;出队时,head = head->next。

循环队列

循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。

循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。

前面,我们提供了一种简单但低效的队列实现。
更有效的方法是使用循环队列。具体来说,我们可以使用固定大小的数组和两个指针来指示起始位置结束位置。 目的是重用我们之前提到的被浪费的存储。


public class CircularQueue {
  // 数组:items,数组大小:n
  private String[] items;
  private int n = 0;
  // head表示队头下标,tail表示队尾下标
  private int head = 0;
  private int tail = 0;

  // 申请一个大小为capacity的数组
  public CircularQueue(int capacity) {
    items = new String[capacity];
    n = capacity;
  }

  // 入队
  public boolean enqueue(String item) {
    // 队列满了
    if ((tail + 1) % n == head) return false;
    items[tail] = item;
    tail = (tail + 1) % n;
    return true;
  }

  // 出队
  public String dequeue() {
    // 如果head == tail 表示队列为空
    if (head == tail) return null;
    String ret = items[head];
    head = (head + 1) % n;
    return ret;
  }
}

阻塞队列和并发队列

阻塞队列其实就是在队列基础上增加了阻塞操作。简单来说,就是在队列为空的时候,从队头取数据会被阻塞。因为此时还没有数据可取,直到队列中有了数据才能返回;如果队列已经满了,那么插入数据的操作就会被阻塞,直到队列中有空闲位置后再插入数据,然后再返回。

你应该已经发现了,上述的定义就是一个“生产者 - 消费者模型”!是的,我们可以使用阻塞队列,轻松实现一个“生产者 - 消费者模型”!

这种基于阻塞队列实现的“生产者 - 消费者模型”,可以有效地协调生产和消费的速度。当“生产者”生产数据的速度过快,“消费者”来不及消费时,存储数据的队列很快就会满了。这个时候,生产者就阻塞等待,直到“消费者”消费了数据,“生产者”才会被唤醒继续“生产”。而且不仅如此,基于阻塞队列,我们还可以通过协调“生产者”和“消费者”的个数,来提高数据的处理效率。比如前面的例子,我们可以多配置几个“消费者”,来应对一个“生产者”。

前面我们讲了阻塞队列,在多线程情况下,会有多个线程同时操作队列,这个时候就会存在线程安全问题,那如何实现一个线程安全的队列呢?线程安全的队列我们叫作并发队列。最简单直接的实现方式是直接在 enqueue()、dequeue() 方法上加锁,但是锁粒度大并发度会比较低,同一时刻仅允许一个存或者取操作。实际上,基于数组的循环队列,利用 CAS 原子操作,可以实现非常高效的并发队列。这也是循环队列比链式队列应用更加广泛的原因。

线程池没有空闲线程时,新的任务请求线程资源时,线程池该如何处理?各种处理策略又是如何实现的呢?

我们一般有两种处理策略。第一种是非阻塞的处理方式,直接拒绝任务请求;另一种是阻塞的处理方式,将请求排队,等到有空闲线程时,取出排队的请求继续处理。

那如何存储排队的请求呢?

我们希望公平地处理每个排队的请求,先进者先服务,所以队列这种数据结构很适合来存储排队请求。
队列有基于链表和基于数组这两种实现方式。这两种实现方式对于排队请求又有什么区别呢?
基于链表的实现方式,可以实现一个支持无限排队的无界队列(unbounded queue),但是可能会导致过多的请求排队等待,请求处理的响应时间过长。所以,针对响应时间比较敏感的系统,基于链表实现的无限排队的线程池是不合适的。而基于数组实现的有界队列(bounded queue),队列的大小有限,所以线程池中排队的请求超过队列大小时,接下来的请求就会被拒绝,这种方式对响应时间敏感的系统来说,就相对更加合理。
不过,设置一个合理的队列大小,也是非常有讲究的。队列太大导致等待的请求太多,队列太小会导致无法充分利用系统资源、发挥最大性能。除了前面讲到队列应用在线程池请求排队的场景之外,队列可以应用在任何有限资源池中,用于排队请求,比如数据库连接池等。
实际上,对于大部分资源有限的场景,当没有空闲资源时,基本上都可以通过“队列”这种数据结构来实现请求排队。

队列基础题:

1.写一个 RecentCounter 类来计算最近的请求。

它只有一个方法:ping(int t),其中 t 代表以毫秒为单位的某个时间.
返回从 3000 毫秒前到现在的 ping 数。
任何处于 [t - 3000, t] 时间范围之内的 ping 都将会被计算在内,包括当前(指 t 时刻)的 ping。
保证每次对 ping 的调用都使用比之前更大的 t 值。

示例:
输入:inputs = ["RecentCounter","ping","ping","ping","ping"], inputs = [[],[1],[100],[3001],[3002]]

输出:[null,1,2,3,3]

提示:
每个测试用例最多调用 10000 次 ping。
每个测试用例会使用严格递增的 t 值来调用 ping。
每次调用 ping 都有 1 <= t <= 10^9。
来源:力扣(LeetCode)933题

class RecentCounter {
    Queue<Integer> q;
    public RecentCounter() {
        q = new LinkedList();
    }

    public int ping(int t) {
        q.add(t);
        while (q.peek() < t - 3000)
            q.poll();
        return q.size();
    }
}

2.给定一个用字符数组表示的 CPU 需要执行的任务列表。其中包含使用大写的 A - Z 字母表示的26 种不同种类的任务。任务可以以任意顺序执行,并且每个任务都可以在 1 个单位时间内执行完。CPU 在任何一个单位时间内都可以执行一个任务,或者在待命状态。

然而,两个相同种类的任务之间必须有长度为 n 的冷却时间,因此至少有连续 n 个单位时间内 CPU 在执行不同的任务,或者在待命状态。
你需要计算完成所有任务所需要的最短时间。

示例 1:

输入: tasks = ["A","A","A","B","B","B"], n = 2
输出: 8
执行顺序: A -> B -> (待命) -> A -> B -> (待命) -> A -> B.

注:
任务的总个数为 [1, 10000]。
n 的取值范围为 [0, 100]。
来源:力扣(LeetCode)621题

public class Solution {
    public int leastInterval(char[] tasks, int n) {
        int[] map = new int[26];
        for (char c: tasks)
            map[c - 'A']++;
        PriorityQueue < Integer > queue = new PriorityQueue < > (26, Collections.reverseOrder());
        for (int f: map) {
            if (f > 0)
                queue.add(f);
        }
        int time = 0;
        while (!queue.isEmpty()) {
            int i = 0;
            List < Integer > temp = new ArrayList < > ();
            while (i <= n) {
                if (!queue.isEmpty()) {
                    if (queue.peek() > 1)
                        temp.add(queue.poll() - 1);
                    else
                        queue.poll();
                }
                time++;
                if (queue.isEmpty() && temp.size() == 0)
                    break;
                i++;
            }
            for (int l: temp)
                queue.add(l);
        }
        return time;
    }
}


3.返回 A 的最短的非空连续子数组的长度,该子数组的和至少为 K 。
如果没有和至少为 K 的非空子数组,返回 -1 。

示例 1:

输入:A = [1], K = 1
输出:1

示例 2:
输入:A = [1,2], K = 4
输出:-1

示例 3:
输入:A = [2,-1,2], K = 3
输出:3

提示:
1 <= A.length <= 50000
-10 ^ 5 <= A[i] <= 10 ^ 5
1 <= K <= 10 ^ 9
来源:力扣(LeetCode)862题

class Solution {
    public int shortestSubarray(int[] A, int K) {
        int N = A.length;
        long[] P = new long[N+1];
        for (int i = 0; i < N; ++i)
            P[i+1] = P[i] + (long) A[i];

        // Want smallest y-x with P[y] - P[x] >= K
        int ans = N+1; // N+1 is impossible
        Deque<Integer> monoq = new LinkedList(); //opt(y) candidates, as indices of P

        for (int y = 0; y < P.length; ++y) {
            // Want opt(y) = largest x with P[x] <= P[y] - K;
            while (!monoq.isEmpty() && P[y] <= P[monoq.getLast()])
                monoq.removeLast();
            while (!monoq.isEmpty() && P[y] >= P[monoq.getFirst()] + K)
                ans = Math.min(ans, y - monoq.removeFirst());

            monoq.addLast(y);
        }

        return ans < N+1 ? ans : -1;
    }
}
更新时间:2020-02-05 18:30:41

本文由 寻非 创作,如果您觉得本文不错,请随意赞赏
采用 知识共享署名4.0 国际许可协议进行许可
本站文章除注明转载/出处外,均为本站原创或翻译,转载前请务必署名
原文链接:https://www.zhouning.group/archives/数据结构基础05线性数据结构之队列
最后更新:2020-02-05 18:30:41

评论

Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×